On the asymptotic enumeration of Cayley graphs

نویسندگان

چکیده

Abstract In this paper, we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every digraph smallest possible automorphism group: is, it is a digraphical regular representation (DRR). approach corresponding question for undirected The situation complicated by fact there two infinite families groups do not admit any graphical (GRR). strategy digraphs involved analysing separately cases where group R nontrivial proper normal subgroup N with property fixes each -coset setwise, and does not. deal graphs case such subgroup.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic aspects of Cayley graphs

Arising from complete Cayley graphs Γn of odd cyclic groups Zn, an asymptotic approach is presented on connected labeled graphs whose vertices are labeled via equallymulticolored copies of K4 in Γn with adjacency of any two such vertices whenever they are represented by copies of K4 in Γn sharing two equally-multicolored triangles. In fact, these connected labeled graphs are shown to form a fam...

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Asymptotic enumeration of sparse 2-connected graphs

We determine an asymptotic formula for the number of labelled 2-connected (simple) graphs on n vertices and m edges, provided that m−n→∞ and m = O(n logn) as n→∞. This is the entire range of m not covered by previous results. The proof involves determining properties of the core and kernel of random graphs with minimum degree at least 2. The case of 2-edge-connectedness is treated similarly. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2021

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-021-01163-w